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R H E O L O G I C A L  P R O P E R T I E S  OF M A T E R I A L S  

F R O M  T H E  P O I N T  O F  V I E W  OF P H Y S I C A L  K I N E T I C S  

M. G. Pe t rov  UDC 539.37:534.282 

Zhurkov and Kauzmann theological bodies, reflecting the physical regularities of plastic 
deformation of materials, are studied. Solutions of differential equations of flow for composite 
theological bodies are obtained. Examples of using structural models of materials that consist 
of new theological bodies and describe the inelastic behavior of alloys for various types of 
temperature-force loading are given. The obtained solutions of the differential equations are 
used for analysis of the creep of a structurally unstable alloy. 

In reproducing the deformation properties of structural materials in calculations, the ideological 
foundation of concepts of a solid body is very important. Most of the methods used are based on approaches 
of the mechanics of a solid deformable body, which do not study the causes of deformation processes and do 
not reflect adequately the entire set of inelastic properties of the material. Only in particular cases of loading 
using special (often artificial) approaches can admissible solutions be obtained [1-3]. The observed deformation 
characteristics of solid bodies are caused by a number of internal thermodynamic processes. Modeling of these 
processes opens up new opportunities in analysis and reflection of macrocharacteristics of materials. Therefore, 
theological models of materials, based on the laws of physical kinetics, are more promising and universal and 
can predict correctly the course of thermodynamic processes when it is difficult to obtain experimental data 
or they are insufficient. 

This approach is based on the theory of absolute reaction rates [4], evolved in 1935. Among the 
problems studied theoretically, diffusion [5] is closest to strength problems. Kauzmann [6] was one of the first 
to apply the theory of reaction rates to the flow of solid bodies, treating creep as directed diffusion under the 
action of applied stresses. Assuming that an applied stress decreases the energetic barrier in one direction and 
increases it by about the same amount in the opposite direction, he obtained a relation for the excess number 
of transition acts per unit t ime in the direction of the applied stress: 

AE ." -- ( -  

where E is the initial height of the energy barrier and AE is the change in this height under the action of the 
stresses. At large AE,  the return flow through the barrier is usually ignored and relation (1) takes the form 

n * = A e x p (  E - A E  ). (2) 
Kauzmann assumed that the quantity AE depends linearly on the stresses, and relation (2) has been supported 
by some experimental results. 

Since the 1950s fracture and deformation processes of materials have began to be studied in terms of 
kinetic concepts of the nature of strength [7, 8]. As a result, ideas evolved that provided new insight into 
all the observed regularities in the behavior of bodies under load [9-11]. Kinetic concepts are the basis in 
constructing physical models of alloys that describe thermally activated deformation and fracture processes 
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and the at tendant  internal-stress relaxation and structural transformations [12]. This is possible because, in 
mechanical models of materials, the behavior of viscous elements is described by equations of physical kinetics 
whose parameters are functions of the structure of the material. Integrally reflecting the real thermodynamic 
processes in a solid body, these models allow one to predict its behavior over a very wide range of loading 
conditions, to eliminate a number of conditionalities that still dominate in engineering practice, and to obtain 
new information on the properties of a specific alloy [13]. 

Rheo log i ca l  M o d e l s  of  Solid Bodies .  Besides the classical bodies known in rheology (a Hooke body 
H, a Newton body N, and a St. Venant body StV [14]), we introduce new bodies. A body whose deformation 
is described by an expression of the form (2) is called a Zhurkov body Zh [13], and a more complex variant 
with a flow equation of the type (1) is called a Kanzmann body Km. 

Experiments show that for steady flow of a solid body, the plastic-strain rate depends on the stresses 
and temperature as follows: 

= exp ( R-Y ) (3) 

Here Q0 and a are the activation parameters and e.uo is the product of the residual strain by the frequency 
factor [10, 11, 13]. In terms of thermodynamics, relation (3) is of the form [11, 15] 

( ) (0o-oo  de A G  = N* e~uo exp exp (4) 
d--/= N*r - ~ k T  ] '  

where A G  = A H  - T / k S  - -  the Gibbs free energy - -  is the driving force of the reaction, and the activation 
enthalpy A H  = Q0 - a a  is represented by the effective values of the initial activation energy Q0 and the 
activation volume a. The linear dependence of AH on the stress cr corresponds to numerous experimental 
data [10], and departure from it is mostly caused by changes in the parameter a,  which is a structurally 
sensitive coefficient. The preexponent in (4) has the following physical meaning: N* is the number of "flow 
units," r is the contribution of each flow unit to the overall deformation of the body, u0 --- 1013 sec -1 is the 
effective frequency of at tempts  of atoms to overcome the energy barrier, and AS  is the activation entropy. 
However, this concept of the kinetic process requires detailing. Rheological models are intended for this. 

Denoting A = e.u0exp ( - Q o / R T )  and B = a / R T  in (3), we write the rheological equation of a Zh 
body: 

de/dt = Aexp (Ba) .  (5) 

At low stresses, relation (5) gives deviations from experimental data. Account for the probability of reverse 
passage of activated complexes through the energy barrier is a physically substantiated correction. If in direct 
and reverse passage through the barrier, the contributions of deformation processes are assumed to be equal, 
the rheological equation of state for a Km body 

de/dt = 2A sinh (Ba)  (6) 

is more rigorous. Rheological bodies with constant values of the parameters A and B are called ideal bodies. 
We form composite bodies of Zh or Km and H bodies. They will be called physical media and be denoted 

by the symbol PM. In accordance with the notation adopted in rheology [14], the rheological formulas of the 
basic composite bodies are written as 

PM1 = H  - Zh, P M s = H  - Km, 
P M 2 = H  [ Zh, P M 6 = H  [ Km, 

P M 3 = H  [ PMx = H  [ (H - Zh), P M ~ = H  [ P M s = H  
P M 4 = H  - P M 2 = H  - (H I Zh), P M s = H  - P M 6 = H  

I (H - Km),  
- ( H  I Km ). 

Here the symbols - and [ denote series and parallel connection of bodies, respectively. We consider some basic 
solutions of the differential equations for the behavior of composite bodies under load. The letter M denotes 
the elastic modulus of an H body. 

Series and parallel connections of an H body with a Zh or Km body form bodies similar to Maxwell 
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and Kelvin (Voigt) bodies, where the viscous element is an N body. Here we do not differentiate between the 
viscosity and plastic flow, because the difference here is only in the form of the analytical relation between 
the flow rate and the stresses. 

The rheological equation of a PM1 body is written as the equality of the rate of total strain to the sum 
of the elastic strain rate of the H body and the plastic strain rate of the Zh body (5): 

1 da de 
-'M d--[ + Aexp(Ba) = ~-~. (7) 

The solutions of (7) are as follows 
�9 at constant strain (de/dt = 0), we have the stress relaxation equation 

1 ln[exp (-Bao) + ABMt]; (8) 

�9 at constant strain rate de/dt = C, after replacing the integration constant in (8) by a function and 
obtaining a linear equation, we have the relation 

A [1 - exp (-BMCt)]}; (9) 1 In{ exp [ -B(a0  + MGt)] + -~ 

which, as t ~ cr gives the flow stress 

a = - ~  In , (10) 

which depends on the strain rate and the temperature; 
�9 for loading at a constant rate da/dt = D, we obtain the following time dependence of the strain: 

Dt exp (BDt) - 1 (11) 
e = r + ~ "  + A exp (Bao) BD 

Here a0 and r are the stress and strain at t = 0. 
At low stresses, at which the first term under the logarithm is much larger than the second, relation 

(9) gives a proportional dependence of stresses on time, and, hence, on strain. As the stresses increase and the 
terms become comparable, a smooth transition to constant flow stresses, given by formula (10), is observed. 
Under mild loading [solution (11)], the plastic strain increases exponentially with increase in the stresses, also 
giving the impression of the existence of a "yield limit." 

A comparison of solutions (9) and (11) shows that the stress-strain relationship cannot be unambiguous 
and depends on the loading method. The solutions are equivalent only for small a,  for which plastic strains are 
negligible. With increase in the stresses, they give the natural transition from elastic to elastoplastic strains. 

For a PMs body, the rheological equation is the same as (7) with replacement of (5) by (6): 

1 da de 
-M d---[ + 2Asinh(Ba) = d-'-i" (12) 

It has the following solutions. 
For severe loading at dr = 0, integrating (12) gives 

a=BArtanh(tanh(B---~~ 13) 

or, for calculation procedures, 

1 l + X  [ X = e x p ( B a ~  
~r= ~ Inl~ . exp(Bcro)'+l 

For de/dt = C, replacing the integration constant in (13) by a function, we arrive at the Riccati equation, 
which becomes a second-order linear differential equation [16]. Reverse transformation of its general integral 
gives the solution 

2 [K1 + K2K3exp(-lfot)] 
= ~ Artanh [ 1 -- A-~-exp ( - - - - ~  J' (14) 
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where 

K 0 = B M ~ / 4 A  2+C 2, K1 =(k /4A 2 + C 2 - 2 A ) / C ,  

exp (Ba0) - 1 - Kl[exp (Ba0) + 1] 
K2 = (k/4a  2 + C 2 + 2A)IC; Ks = exp (B~r0) - 1 + K2[exp(Bao) + 1]" 

As t ~ co, from (14) we obtain the "yield limit" 

2 
a = ~ Artanh (g l ) .  (15) 

For mild loading at constant rate D, we have 

Dt 2A {cosh [B(a0 + Dt)] - cosh (Ba0)}. (16) e = e 0  + ~ +  ~--~ 

At large stresses, solutions (8)-(11) and (13)-(16) give exactly the same results. Therefore, in 
computational procedures using models with Km bodies, it is reasonable to employ simpler models with 
a Zh body in appropriate regions of the loading program. This is also true for algorithms for processing 
experimental data  in determining parameters of rheological models. 

For a PMz body, solving the equations of equilibrium and compatibility of strains, we obtain the 
rheological equation 

de exp ( B M e ) =  Aexp(Ba). (17) 
dt 

Integrating this equation for a = a0 + Dt leads to the solution 

[ AM [ 1 - e x p ( - B D t ) ] } ]  (181 e = -~l ao + Dt + -~l l n { e x p [ - B ( a 0 - M e 0 + D t ) ] + T  " 

For a loading rate D = 0, we obtain 

e = ~ a0 + ~ In {exp [ -B(a0 - Me0)] + ABMt}  . (19) 

For a PM6 body, one obtains solutions of the rheological equation de/dr = 2 A s i n h [ B ( a -  Me)] 
immediately from (13) and (14) by reducing this equation to (12) and expressing e in terms of stresses 
in a viscous'element: for da/dt = D, we have 

1 { 2 [gl  + g2g~exp( -go t ) ]~  
e = --~ ao + D t -  -~ Artanh [. 1S-'K--'-~-x~-'~0t) "JJ' (20) 

where 

go = B~/4A2M 2 + 0 2, g l  = (~/4A2M 2 + 0 2 - 2AM)/D, K2 = (~/4A2M 2 + D 2 + 2AM)/D, 

K3 = exp [B(a0 - Me0)] - 1 - g l{exp  [B(a0 - Me0)] -t- 1} 
exp [B(a0 - Me0)] - 1 + g2{exp [B(a0 - Me0)] + 1} 

and for D = 0, we have 

~ [ a 0 - 1  2 Artanh {tanh [ B ( a 0  - M s 0 )  ] ( -2ABMt)}] .  (21) = ~ J exp 

If the material behaves the same in tension and compression, in going over to the compression region, 
only the signs of stresses, strains, and their rates should be altered. Otherwise, the parameters A and B must 
be different. 

When the stresses in (18) are larger than - l n ( A M / D ) / B  or the stresses in (20) are larger than 
2 Artanh (K1)/B,  a functional relationship between stresses and strains is seemingly observed under loading. 
In this case, we deal with "hardening plasticity." If the loading is stopped, we obtain equations of so-called 
logarithmic creep [17], which was treated analytically in (19) and (21). In processing experimental data of 
a real material, one should differentiate between plastic flow involving real hardening, where the structure 
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of the material changes and the activation volume ~ decreases, and flow determined by various deformation 
mechanisms each of which have characteristic activation parameters. 

Three-element models with an N body (a standard inelastic body) describe inelasticity of a relaxation 
type - -  amplitude-independent internal friction [18]. By virtue of the characteristic dependence of the flow rate 
on the stresses, replacement of an N body by a Zh or Km body leads to analytical dependences that describe 
inelasticity of a hysteresis type - -  amplitude-dependent internal friction. In metals and alloys, the latter is 
associated with dislocation hysteresis [18], which results from thermally activated motion of dislocations [19]. 

Solutions of the differential equations for PM3, PM4 and PMr, PMs bodies are found by reducing these 
equations to the form (7) or (12) and using the solutions obtained above with the corresponding substitution of 
variables, parameters, and initial conditions. In analysis of internal friction, they allow one to calculate small 
inelastic strains when direct measurements are difficult and to describe the transition from severe loading of 
a solid body to mild loading and vice versa [13]. 

To reflect the properties of a real material, structural models [3, 13] consisting of a number of elements 
each of which characterizes one or another structural factor or strain mechanism axe required. Solutions 
of multielement models are obtained by generalization of solutions of the rheological equations of three- 
element models. Parameters of individual structural elements of the models can also be variable. For example, 
depending on the properties of the specific material, the creep element of a PMI body can have its internal 
structure as well [13], owing to which, attendant relaxatior~ processes affecting the strain are modeled. 
Assuming that the model parameters are constant in the time step t, one can use solutions of the differential 
equations of ideal bodies to reproduce the deformation properties of real alloys. 

Here, in essence, the general approach formulated by Rabotnov [20] is realized. In this approach, the 
creep rate is determined by the stress, the temperature, and a certain number of structural parameters. In 
this case, the structural parameters of the material itself can be determined quantitatively from the model 
parameters. 

Use of the Rheological Models. Let us show some possibilities of the solutions obtained in 
modeling and analysis of the deformation properties of materials. We analyzed rather fully the deformation 
characteristics of D16 T aluminum alloy [13]. We give examples of calculations using a structural model of 
this alloy that describes hysteresis and creep. 

As a test problem, we study creep with a stress jump. Experimental results of such tests have long 
been known [17]: in the unsteady stage of creep, the initial stress increased or decreased by a jump, and after 
some time it returned to the same level. 

Figure 1 gives results of calculations of the deformation process in the D16 T alloy performed using its 
model. The flow characteristics of the material predicted by the model axe exactly the same as those of the 
real flow. No additional conditions apart from specification of the loading program and the temperature are 
required. 

This model of the material was used to estimate residual stresses and their relaxation in time on the 
contour of a hole in a thin-walled structural element. Figure 2 shows experimental and calculated residual 
stresses on the contour of a central hole in a sheet after single tensile loading and unloading followed by 
exposure to different temperatures. In experiments, the release method of [21] was used. Calculations were 
performed ignoring the structural instability of the alloy and can be considered quite satisfactory, because no 
relaxation tests were performed. 

The inelasticity of a material under cyclic loading is usual!y characterized by the area and shape 
of the hysteresis loop. When rheological models with Zh or Km bodies are used, these characteristics are 
obtained directly by calculations by time steps with variation of the loading parameters. Figure 3 shows 
plastic-hysteresis loops calculated using the model of D16 T alloy for two forms of loading cycle. The model 
describes stabilization of the loop, the change in its shape, and accumulation of residual stresses. The damping 
characteristics of the material, which are required, for example, to determine the loading of structures under 
vibration, are calculated by the same method. 

In all the above examples, the model predicts precisely the behavior of the material. The model 
parameters are obtained by processing only creep test results at constant stresses and strain diagrams of 
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Fig. 1. Creep with a stress jump: calculations using the model of the material D16T 
(423 K), ~rl = 300 MPa and a2 = 270 and 310 MPa. 

Fig. 2. Relaxation of residual stresses on the contour of a central hole of ~ 6 mm in a 
sheet 80 mm wide and 3.5 mm thick after single loading at 293 K to a nominal stress of 
300 MPa and relaxation: an experiment with 95% confidence intervals [21] (curves 1 and 
2) and a calculation [13] (curves 1' and 2'); curves 1 and 1' refer to 293 g and curves 2 
and 21 refer to 423 K (D16 T). 
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Fig. 3. Calculation of plastic-hysteresis loops for D16 T deformed by 0.2% (293 K, 9- 10 -3 Hz): 
(a) symmetrical-sawtooth-shaped cycle of loading; (b) sinusoidal cycle of loading. 

Fig. 4. Experimental creep curves for 50KhFA steel at 643 K and activation volumes for the 
viscous element of a PM6 body calculated from the creep curves: curves 1 and 2 refer to a = 400 
and 500 MPa, and curves 3 and 4 refer to the activation volumes a2 for curves 1 and 2. 

the alloy under monotonic loading. 
When experimental data  are insufficient or the structure of the material changes during flow, analytical 

solutions of the rheological equations of physical media can be used. In structural transformations in alloys, 
the activation parameters of the deformation process change. The activation volume c~ ranks first in the 
degree of effect of structural changes on the activation parameters of the flow process. Next follow the initial 
activation energy Q0 and the preexponent in (4) [10, 11, 13]. We give an example of analysis of the strain 
characteristics of a structurally unstable alloy and show the possibility of extracting maximum information 
with limited experimental data. 

We analyze the initial period of creep at constant stresses using the curves in Fig. 4. Specimens of 
50KhFA steel (0.45-0.55% C, 0.5-0.8% Mn, 0.17-0.37% Si, 0.8-0.1% Cr, and 0.1-0.2% V) were tested after 
quenching and low-temperature tempering. 1 It is known that exposure to stress leads the tempering process, 
called dynamic aging. As a result, the structure of the material changes [22]. This is evidenced by a decrease 

IThe experimental part of this work was performed by S. A. Katarushkin, V. N. Chaplygin, and S. A. 
Laznenko. 

109 



in the strength of the steel. In two test regimes, specimens were subjected to stress for different times and 
unloaded, and reverse flow of the material was recorded (decrease in residual strain). 

The rheologicai formula of a body that reproduces this plastic-flow process is of the form 

PM9 = Kml - PM8 = Kml - (H2 ] Kin2), 

where Kml describes the steady creep stage and PM6 describes the initial creep period and creep recovery 
after relaxation. The elastic body H1 was eliminated, and the elastic strain component was not considered. In 
tests performed on an MTS-10 machine, the loading and unloading times were recorded. This was also taken 
into account in analysis of the curves. The experimental errors of the relative strains were +4-  10 -s.  

We first analyze creep recovery. We use the simpler solution (19) for a PM2 body, because the initial 
period of creep recovery is associated with large residual stresses in it. This solution corresponds to solution 
(21). 

If, from the moment  of unloading, the strain decreases by Ael in time tl and by Ae2 in time t2, using 
solution (19) we write the relation 

t~ = exp(B2M2As2) - 1 

tl exp (B2M~.Ael) - 1' 

from which the product B2M2 is obtained. The difference between the values of this product for two curves 
of creep recovery was +8 % of its average value. This is explainable by the difference in the properties of the 
tested specimens. 

Then, using solution (21), for the initial creep period (a PM8 body) we write the same relation for two 
time intervals from the initial reference point to with strain e0 to the final times tl and t2 with strains el and 

e2: 

t2 - to In {tanh [B2(a0 - M2r [B2(tr0 - M2~0)]} 
tl - to - In {tanh [B2(a0 - M2~l)l/tanh [B~(~'0 - M2e0)]}" 

Using this relation for a number of values of the modulus M2 we determine a number of values of B2, 
subtracting the presumable contribution of the constant component of the creep rate from ~0, r and r so 
that the product B2M2 corresponds to the stage of creep recovery. Then, for each pair of values of B2 and 
M2, from (21) we find the parameter A2. As a result, for both loading regimes we have two groups of the 
parameters A2, B2, and M2, from which the parameters that best describe the experimental creep curves 
should be chosen. 

Construction of creep curves using the parameter values found shows that for constant values of 
them, the calculated creep curve does not agree with the experimental curve everywhere. With insufficient 
experimental data, it is natural to associate departures from the ideal-material model with the parameter that 
is most sensitive to structural changes, i.e., with the activation volume ct. Assuming that  the parameters A2 
and M2 are constant, we analyze the creep curves by time steps, determining the values of B2 (and, hence, 
a2) in each time step provided that there is complete agreement (within the measurement error) between the 
calculated and experimental strains. In this case, from the groups of parameters for each loading regime, we 
choose single values of A2 and M2 such that, at the moment of unloading, the product B2M2 corresponds to 
that obtained previously and the calculated creep recovery curve corresponds to the experimental curve. 

Figure 4 shows the calculated activation volume ct2. In the initial period of flow, ct9 grows rapidly 
(curves 3 and 4) to a practically constant value. This is supported by material hardness measurements. The 
hardness of a specimen tested at 500 MPa decreased by 3 units (initial hardness HRCref =- 44), and the 
hardness of a specimen tested at 400 MPa decreased by 3.5 units (initial hardness HRCref = 42), i.e., by 
almost the same value, although the test time was severalfold longer. 

The difference between the maximum values of the parameter ct2 in both test regimes is within the 
usual determination errors due to the difference in the properties of individual specimens [10]. In addition. 
here we do not take into account the possible change in the parameter A2, which also increases somewhat in 
such situations [12]. This is evidenced by the somewhat larger residual strain at the neck of the specimens 
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after rupture tests at 643 K (~. = 0.75) compared with tests at 293 K (E. = 0.46). Of course, for quantitative 
estimates of changes in the remaining parameters, tests at other temperatures are required. 

Although the behavior of c~2 is the same, it increases more rapidly at larger stresses. This is'explained 
by a more rapid course of diffusion processes. The rate of the structural transformations due to these processes 
is expressed by a relation similar to (4) [23, 24]. The change in a2 from the initial value a ~ to the largest 
value is satisfactorily described by the Avrami equation with exponent n > 4 

= s ~ + + e x p  ( - k t " ) ] ,  

which is used in the formal theory of transformation kinetics [25]. The effective activation volume ~ leading 
to a change in the plasticity of the alloy can also be estimated. If, for al, a2 increases to the largest value 
in time th and for or2, it increases to the largest value in time t2, we have ~ = RT ln(tl/t2)/(cr2 - cq) = 
0.038 kJ/(mole- MPa). We compare this value with the value of the activation volume a l ,  which characterizes 
the constant component of the creep rate, in the same manner as was done in analysis of transformations of 
Duralumin [13]. Since in processing of the experimental creep curves, two velocity values have already been 
obtained, from (5) or (6) we calculate the parameters A1 and B1 and then al .  Here we see a similar pattern: 

< al  [0.042 kJ/(mole- MPa)]. This is explained by the lower average level of local stresses, which determine 
the rate of volume diffusion. 

One can estimate the initial activation energies Q0 for deformation of Kml and Km2 bodies, if, as a first 
approximation, the preexponent in (4) is set equal to l0 is sec -1. The estimates obtained (257-287 k J/mole) 
are close to the activation energy of self-diffusion in a-Fe [26, 27]. 

The above examples show how large a body of information is provided by analysis of the theological 
properties of materials and how many possibilities arise in modeling these properties if the mechanical models 
are filled with physical content. New information is extracted and explanations for the observed regularities 
in the behavior of solids are obtained. Going over from modeling of the macrocharacteristics of a deformable 
body to modeling of the associated processes not only extends the range of application of the models but also 
substantiates prediction where extrapolation of experimental dependences is required. 
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